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Summary. A reexamination of the vibrational coordinates appropriate in vi- 
bronic intensity calculations in octahedral coordination compounds is presented. 
We derive a complete set of symmetry coordinates that is orthonormal and 
transforms correctly under the group generators. The vibronic hamiltonian for 
the crystal field and ligand polarization contributions to the intensity are 
calculated in the basis of these coordinates. The crystal field term is evaluated 
both using a truncated basis set for the intermediate electronic states and using 
the closure approximation. These methods have been applied to the calculation 
of the vibronic intensity distribution for the 4A2g ~ 2Eg transition of the MnF z- 
ion and close agreement wtih experiment achieved. 

Key words: Vibronic intensities-Vibrational coordinates-Crys ta l  f i e ld -  
Ligand polarization - Complex ion 

1. Introduction 

In previous papers in this series [ 1- 7] we have attempted to calculate the relative 
contributions of the three odd parity vibrations of octahedral ML 6 transition 
metal coordination complexes to the total vibronic transition dipole of specific 
d-d electronic transitions. Three methods of calculation have been employed: 

(a) The Liehr-Ballhausen approximation to the crystal field formulation where 
the vibronic intensity is assumed to be derived from a single d ~ p  transition at 
high energy. 

(b) The closure approximation to the crystal field formulation where the nature 
of the odd intermediate status is undefned. 

(c) The ligand polarization procedure where the intensity is derived from a 
coupling of the metal ion transition multipoles with the radiation field induced 
transient ligand dipoles. 

The conceptual and computational details of these metals have been developed 
and explained in this series. A common feature of each of the methods is the 
sensitivity of the vibronic intensity distribution to the details of the vibrational 
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wavefunctions which in turn depend on the intermolecular potential. Indeed for 
the case of the 4A2g ~ 4T2g transition of  a d 3 complex ion, the vibronic intensity 
distribution is independent of all electronic factors in the case of methods (a) 
and (c). In the case of method (b) there is a relatively weak dependence on the 
dimensionless quantity c~ = (r6)/R2(r 4) where R0 is the metal ligand distance 
and radial functions are evaluated for the metal ion d-functions. A full calcula- 
tion would require the inclusion of both crystal field [i.e. (a) or (b)] and ligand 
polarization [(c)] contributions as well as the cross term between them. In this 
case the assumed values of certain electronic quantities also influence the 
calculated vibronic intensity distribution. 

Our initial calculations were based on an inadequate treatment of  the 
vibrational coordinates. The need for great care in this area became apparent 
during attempts to compare the calculation of Kupka et al. [8, 9] on ReCI~- 
with our work on R e B ~ -  [7]. We now present a more formal treatment of 
the vibrational problem and the application of  this method to the calculation 
of the vibronic intensity distribution for t h e  4A2g ~ 4T2g transition of MnF6 2- . 
A significant conclusion is the necessity of using symmetry coordinates defined 
in a different way to those conventionally employed in normal coordinate 
analysis. 

2. Normal modes of MnF~6- 

The vibrational normal modes of an octahedral MnF6 2- ion transform as 
A1g + Eg + 2Tlu + T2g + T2, and are conventionally labelled Vl to v6. Of these, 
our particular concern is with the three odd vibrations which can act as 
vibronic origins for t he  4A2g---~4T2g electronic transition. The vibrational sym- 
metry coordinates in terms of an internal coordinate basis set were worked out 
by Pistorious [10]. Apart from (we assume) typographical errors, these symme- 
try coordinates transform correctly under the Oh group generators C4z, C4x, 
and C3x,y,z according to the method of Griffith [11]. 

We require that the complete set of internal coordinates are orthonormal. 
We can then write the transformation between the symmetry coordinates S and 
the internal coordinates s as: S = Us where U is unitary. 

The most general relationship between an internal coordinate sk and the 
cartesian displacement coordinates R~ is: 

+ ~ ~ B~.RiRj + higher terms 
i /j 

(1) 

It is usual to introduce the approximation that the vibrational amplitudes are 
infinitesimal and write s = BR where B is, in general, not square. To make B 
square so that it can be inverted it is usual to add to s the six external motions 
of the whole complex ion. Note however that B is not unitary so that if we 
write S=(UB)R then UB is not unitary. The transformation $ = (UB)FI is 
given in Appendix 1. We emphasize that all previous vibronic intensity calcula- 
tions employed vibrational symmetry coordinates with incorrect phases and/or 
normalization for this application. The correction of this error results in a 
significant change in both the calculated vibronic intensity distributions and 
their physical interpretation. 



Vibronic intensities in the electronic spectra of transition metal complex ions VIII 351 

3. The vibronie hamiltonian 

The independent systems model vibronic hamiltonian in a relative nuclear 
Cartesian displacement coordinate basis may be written to the first order as: 

H(1) = Z (SL - -  S M ) V L ( V c F  q- V L p )  = H(1) -J- H(') CF ~ LP 
L 

(2) 

where ~L and SM are the ligand and metal nuclear Cartesian displacement vectors, 
VCF and VL,, are the crystal field and ligand polarization potential operators and 
the summation is over the ligand subsystem. 

The two potential operators can be calculated in tensorial form following the 
method of Carlson and Rushbrooke and their symmetry adapted forms are given 
in [12] and references therein; 

VCF = Z ZL e Z CF k, M 
- G<q,(L)Dq,( ) (3) 

L k l q  1 

where the crystal field geometrical factors are: 

GCFk~q~rL~J = ( - 1) q~ + 1RL(< + 1)C~q,(OLq~L) (4) 

and Garstang's operators are defined as Dq k = --erkCkq(O, ~) where the Ckq(O, ~b) 
are the standard Racah tensorial operators. Similarly, the ligand polarization 
potential is: 

LP L V L e = Z  Z Dkq~,(M) Z Gk~.q~,~( )#L (5) 
L k l ,  ql X, Y , Z  

Here the ligand polarization geometrical factors are: 

GLP {L ~ 1 1)(q 1 + a)RL(k, +2){ x/(k 1 + q, + 2)(k, + q, + 1)C~(~-,'+ ~ 1) k l q l .  X \  ] ~ 2 (  - -  

- , ] ( k ,  + q, + 2)(kl + q, + 1)C~,(g, '~_ 1) }~ 

Gklql,LP Y (L)  = ~1i( _ l)(ql + 1)RL (k 1 +2){ %/(k 1 _~ ql At-2)(kl "~-ql-'~ 1)c(-kl(q-ll+)1) 

+ ~ / ( k t  - ql + 2)(k, - q, + 1)C~(+,'! o }L 

L .  = __ 1)(q, ~ (k1+2){ Ge~q~,z (L) ( ~)Rz x/(kl + ql + 1)(kl - q l  + 1)C(%~+I)}L (6) 

From Eqs. (1), (2) and (4), the vibronic crystal field and the vibronic ligand 
polarization operators are to the first order: 

H(1) -- ~ ZLe(gr --SM) ~,, D~ql~(M){VLGCFq,(L)}o CF ~- 
L kqq I 

(7) 

HO) = Z ( g L _ g M )  Z DK~(M) Z ~V ~LP LP , L,,<q,,~ }o~ (8) 
L k l q  I X, Y , Z  

" the vibronic crystal field operator, Eq. (7), there are two alternative, but 
ivalent, methods to evaluate the vibronic perturbation in terms of the central 
al tensorial operators. Firstly, the vibronic perturbation may be expressed in 
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a basis set of the standard symmetry coordinates Skt, (Appendix 1) using: 

H(1)=E((~VCFl(~Skt)oSkt-~-E((~VLPI6gkt)oSkt ---- ::~(')CF + J:1('):. LP (9) 
kt  kt  

Both the vibronic crystal field and the vibronic ligand polarization operators to 
the first order may be found from Eqs. (7), (8) and (9). This is equivalent to the 
method used by Liehr and Ballhausen [13-15] although they employed a 
non-standard set of symmetry coordinates. An alternative method to work out 
the explicit forms for these two vibronic operators makes use of the following 
procedure. 

The translation of an ML 6 molecule along the z-axis is represented by the 
coordinate T~ 

where m is the ligand mass and M o the central metal mass. Since R = (UB) -1S: 

V( Tz) = (D V/~$Tz) = ( 6rn + Mo) - I/2{6 /6zM + ~ 6 /6zL } V (10) 

Here the total interaction potential expressed as V = ~.L VLM, VL~/ being the 
interaction among the central metal (M) and the ligand subsystem (L) charge 
distributions. Thus, as for the vibronic operators appropriate to the v3a, v4a and 
v6~ coordinates, we find from the R = ( U B ) - 1 5  transformation: 

(11) 
-1(<51<$z2 + ~)1<$z3 + <$1<$4 + <$1<5z5) v 

V6a = = Jr- N ~  14( --6/6Zz -- 616z3 + ~16z4 + 6/6zs)g 

Since the interaction potential must be translationally invariant: 

{~$/~$Z~t + ~" C$/6ZL } V ==- 

and similar equations apply for translations along the X and Y axes, then the 
vibronic operators are: 

v L  = +(1/,~){<51<$z6 + ~l~zT}v 

V~a = - ( 1 / 2  xf2){ +616z2 + 618z3 + ~$1c$z4 + v (12) 

v ; ,  = +(1/2 x/2){-616z2 - 61~$z 3 + 616z4 + alaz~}V 

and similar expressions can readily be found for V;, for k = 3, 4, 6 and t = b and 
c, respectively. These vibronic crystal field operators, from kl -- 1 to k = 5 (to 
deal with d - d  excitations) are given in Appendix 2. These correct our previous 
tabulation [1]. We also list the terms for k~ = 7, which have not been previously 
reported to include all the relevant terms to deal with f - f  excitations. It is 
important to observe from the above set of equations and from Appendix 1, that 
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the transformation S = (UB)R is not unitary. Of course both methods give 
identical results which demonstrates that these two different approaches are 
equivalent. 

For the crystal field contribution to the total transition dipole moment fi0CFa, 
it is necessary to consider both methods (a) and (b) of Sect. 1. Within the 
Liehr-Ballhausen method in which the intermediate state is truncated to a single 
p function we have for the transition dipole moment associated with the 
I t ,?1)-*  Ir~?~) excitation may be written: 

#r,,,+rzy2CF'~ = - - A E - '  Z Z ZLe(gL --SM) Z {<rl~l]Dkq',(M)[rT)(e?l~=]e272> 
F~ L k l q  1 

+ <rl ?1 I dr? ) ( r?  1D51, (M)[F2?2)}{CgLGCF, q ,  }0 (13) 

where the intermediate central metal's wavefunctions are represented by the set 
IF?) and AE is taken as an effective energy gap corresponding to a parity and 
spin allowed electronic transition. 

When the closure procedure is adopted to evaluate the crystal field transition 
dipole moment associated with the [F171 ) ~ [/"272) excitation, the eth-compo- 
nent of the transition dipole moment becomes: 

1~/~, y 1 ~/~2y 2 C F , O ;  = 2AE -1<It, 7, [/A ~H(1)[F2 ~2 ) (14) 

where: 

# xH(° = e3 E ZL(SL -- SM) E ( -- 1)q'{ r< + 1/x/6(2k I + 1)} Z (2k + 1) 
L k l q  1 k 

CF L × {~(111~1 - q , ) C g q  1÷ 1~ - ~ ( 1  - ll~l - q l ) c ~ 1  _l }[VLG<q,( )1o 

#YH ('> = - - i e 3 ~  ZL(& - -g~)  ~ ( -- 1)q'{r ~' + 1/~/6(2kl + 1)} y' (2k + 1) 
L klq 1 k 

× {ck(111k~ _ql)C~q,+l ) +ck(1 _ l [ k  1 _ql)Ckql ~ CF -1 }[VLGk,q, (L)]0 

# zg(1) = -- e3 Z ZL(SL -- SM) ~ ( -- 1)ql{ r~' + 1/X/3(2k I + 1)} ~ (2k + 1) 
L k l q  1 k 

x ck(10lkl k ~ CF L - - q l ) C q l [ V L G k l q l (  )]0 (15)  

The ck(lml'm ') coefficients are tabulated in Ref. [16] and the Racah operators in 
terms of the Cartesian coordinates are in [17]. 

The ligand polarization contribution to the total transition dipole moment 
associated with the [F~ 71 ) ~ ]F2Y2) transition for isotropic ligands becomes: 

LP, c~ ~r, , ,  +~2,2 -- - • ~L(& - &,) • ( r l  ?, ]Dq< (M)f2?2) [VLa~q, ,  =10 
L k l q  1 

(16) 

where c~ L is the mean ligand polarizability measured at the frequency of the 
electronic transition. Equations (14), (15) and (16) are generally applicable to the 
evaluation transition dipole moments for vibronically allowed transitions for 
complexes of monoatomic ligands. For polyatomic ligands it is necessary to 
include the anisotropy of the ligand polarizability. 
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3. Application to the 2Eg ~ 4A2g transition of the MnF 2- ion 

To investigate the effect of these corrections to the vibrational coordinates on the 
vibronic intensity, we have recalculated the vibronic intensity associated with the 
v6(z2u), v4(Zlu) and v3(rl,) vibronic origins of the 2Eg ~ 4A2g transition of the 
MnF62- ion. The reasons behind this choice and the details of the intensity 
mechanism have been discussed in detail in [1]. In brief, the intensity is derived 
principally from t h e  4A2g ~ 4T2g transition due to the spin-orbit mixing of the 
2Eg and 4T2g states which are separated by about 5600 cm-1; all six vibrational 
modes of the perfectly octahedral complex ion diluted into Cs2SiF 6 are known 
[1]; and the internal modes of the complex ion are not strongly coupled to the 
vibrational modes of the lattice. In addition the vibronic spectrum is exception- 
ally well resolved and their relative intensities are easily measured. 

Using the standard GF matrix formulism and notation for the normal 
coordinate analysis there will be seven independent symmetrized force constants 
F;i (i = 1--*6) and F34 = F43. Since there are only six observable vibrational 
frequencies an additional criterion is necessary to define the normal modes. The 
criterion we have adopted is to minimize the off-diagonal term in the potential 
energy distribution 

2 LkiLliFkl where GFL =LA (17) 
k ¢ l  

This criterion has been implemented by writing the relationship between the 
trans-bond stretching and the cis-stretching interaction f~u = kfdd where k is 
generally a positive constant less than unity, k may then be varied to minimize 
the potential energy cross term subject to exactly fitting the observed vibrational 

Table 1. The L-matrices ~ and potential energy distributions for different force fields applied to the 
MnF 2- ion b 

Force field L33 L34 L43 L44 
PED33 PED34 PED43 PED44 

Ref. [19] 0.296 - 0.034 - 0.292 - 0.408 
(92.5%) ( 7.4%) (7.4%) (92.5°/0) 

Ref. [20] 0.298 0.0 - 0.245 0.437 
(99.9%) (0.0%) (0.0°/0) (99.9%) 

MGVFF with k = 1.67 0,298 - 0,073 - 0.343 - 0.366 
(81.0%) (18.9%) (18.9%o) (81.0%) 

MGVFF with k = 1.59 0,294 - 0.048 - 0,311 - 0.394 
(88.7%) (11.2%) (11.2°/0) (88.7%) 

MGVFF with k = 1.50 0.297 0.027 -0 .284  0.412 
(94.0°/0) (5.9%) (5.9%) (94.0%) 

MGVFF with k = 1.40 0.298 0.011 - 0.261 - 0.427 
(97.6%) (2.3%) (2.3%) (97.6%0) 

MGVFF with k = 1.33 0.298 0.003 -0 .249  0.434 
( 99.4%) (0.5%) (0.5%) (99.4%) 

a In each c a s e  L 6 6  = 0.3243 
b Vibrational data as in Ref. [1] 
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wavenumbers. We have used a modified general valence force field for k values 
between 1.67 and 1.33 as well as the force fields used by Pandey [19] and by 
Mohan [20], the corresponding L matrices and the potential energy distributions 
(using the vibrational wavenumbers from [1]) are given in Table 1. 

We have shown [1, 2] that within both the Liehr-Ballhausen crystal field 
model and the ligand polarization of the vibronic intensity, the relative intensity 
of the vibronic origins are independent for all electronic factors and depends 
only on the vibrational wavefunctions. This is not the case for the crystal field 
model when closure is employed [1] or when the crystal field and ligand 
polarization contributions to the transition dipole are added to produce the total 
transition dipole. It is necessary therefore in these estimates to adopt a value for 
the effective ligand charge zL. One method [ 1] is to use the electrostatic model for 
the crystal field in which Dq = zre2(r4)/6Ro. Using the metal ligand bond length 
R o =  174 x 10-12m [1] the experimental value for Dq and near SCF quality 
radial functions appropriate for an isolated Mn 4+ ion [18] invariably leads to 
unrealistically high (i.e. much greater than unity) values for zL and correspond- 
ing large values for the crystal field component of the total dipole strength, the 
reasons for this have been extensively discussed throughout the history of  crystal 
field theory. For  the purposes of calculating vibronic perturbations it seems more 
reasonable to apply the electroneutrality principle to the region of  the central 
metal ion which leads to zL = 1/3. 

The 4A2g ~ 4T2g transition is composed of  three one-electron transitions 
[xy)-+[X 2 _y2)  and its cyclic permutations. For  the Liehr-Ballhausen model 
we find from Eq. (12) for the three components of the transition dipole moment 
of the [xy> --* [ x  2 - y2) transition. 

# CF, x CF = q-~t-d[f13 Q3b q- fiUQ4b q- flUQ6b] 

tA CF, y = -f2[fl3CrQ3 ~ + fl CF Q4 c -- fl ~F Q6c] (18) 
pCF,~ = 0 

f2= +(3  x/~/28)[zLeZ#X(xy--* y)(r35dp/RS AE], #X(xy--* y) is the xth where 
component of the transition dipole associated with the 3dxy ~ 4py parity allowed 
transition at energy AE, and 

flC3F = _ 8L33 + 3L43 ' flC4F = _ 8L3a q_ 3L44 ' fiCF = _ 3L66 

For  the closure approximation we find from Eq. (14) that the relative 
vibronic intensities of the vibronic origins depends on the value of the dimen- 
sionless parameter e = (r6)/R~@4): 

CF', x _~_ __ ~'~ t i f f  CF'  Q 3 b  "q- t i f F '  Q4b - -  fl CF'  Q6b] 

I AcF''y -~ -o ' [ f lU 'Q3c  q- flU'Q4c - flU'Q6c] (19) 

]ACF' , z  ~_ 0 

where 

f l ~ F ' =  (2K 1 -- g)L33 + KL43, 

1 
=I +E 

fl4cr'= (2~ 1 - -  ~)L34 -~" ~cL44, 

and Q' = 30 x /2  eDq/AE 

riCE'= KL66 ' 
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Finally, for the ligand polarization term we find from Ref. (16) 

t2 LP, x = _ O . [ f l  LP Q3b + fl LP Q4b - -  fl LP Q6b ] 

It LP, y - + (2,,r R LP t3 -- tt'3 ~3c + flLPQ4c +/~6LeQ6c] (20) 
#LV.z = 0 

where f2"= (--5/x/2)[e~L(r4)aa/RTo] and 

f13 LP = 2Ls3 + L43, f l~e = 2L34 + L44, f16 Lp = L66 

The total transition dipole moment associated with the [0)~  [a) excitation, 
within the independent system model, is written: 

-LP (21) ~ Total = ~ C F  a _~_ ~ O ~ a  

Assuming that the potential energy surfaces of the initial and terminal electronic 
states are described by identical harmonic oscillator functions we have: 

h o Total / t~ Total, = W#o a I1) l  2 with I(0lQ,]l>12= (22) 
x, y, z 47~CVi 

and hence the total dipole strength ~'o*an rotat becomes: 

Drotal cF D LP " D (cF'Lm (23) O~a = D o r a  + O-~a ~ O-~a 

The calculated dipole strengths for the Liehr-Ballhausen crystal field, closure 
crystal field and ligand polarization models for seven different force fields using 
selected parameter values are given in Table 2. For the Liehr-Ballhausen 
crystal field model, the radial integral is taken for Mn 4+ from [18], the transition 
dipole moments are proportional to the ligand charge, the oscillator strength of 
the d ~ p  transition and the (r3)ap radial integral and inversely proportional 
to the energy of the d ~ p  transition so that values for other parameter values 
are easily derived. Note the sensitivity of the relative intensities of the v3 and 
v4 vibronic origins to the magnitude of the force field parameter k. The 
calculated overall magnitude of the dipole strength is of the same order of 
magnitude as the experimental value [1] (although the calculated value relates to 
a hypothetical system in which the potential surfaces of the ground and excited 
states are identical), but the calculated intensity distribution is quite different 
from that observed for t he  4Azg---~2Eg transition with the v3 vibronic origin 
calculated to be much more intense than the vibronic origins due to the bending 
modes. 

As discussed previously, the calculated vibronic intensity distribution using 
the crystal field model with closure depends on the radial functions. For 
expanded radial functions corresponding to an approximately neutral central 
metal ion, the bending modes have comparable vibronic intensity and are several 
times more intense than the stretching mode, in agreement with experiment. As 
the metal ion charge is increased, contracting the d-electron functions and 
reducing the magnitude of the parameter ~, the calculated vibronic intensities of 
the bending modes decrease more rapidly than that of the stretching mode. For 
a radial function applicable for Mn 4+ the intensity of these modes are reversed, 
Table 2. The total intensity is calculated to be of the correct order of magnitude. 

Finally, for the ligand polarization term the calculated vibronic intensity 
distribution corresponds to the bending modes being several times more intense 
than the stretching mode in agreement with experiment and is again independent 
of the radial functions. 
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Table 2. Calculated dipole strengths [D/10-4(Debyes) 2] for the vibronic origins of  the 4A2g "---~4T2g t ransi-  

t ion of the MnF62- ion. 1 Debye = 10-3°Cm 

Dipole strength a 
Force Field 

Ref.[18] Ref.[20] k = 1 . 6 7  k = 1 . 5 9  k = l . 5 0  k = l . 4 0  k = 1 . 3 3  
Liehr Ballhausen crystal field b 

DCF(v3) 9.81 9.112 10.46 10.11 9.76 9.40 9.18 
DCr(v4) 1.60 2.99 0.46 1.11 1.81 2.47 2.84 
DCF(v6) I 2.40 

Closure crystal field c 
DCF(v3) 5.83 4.16 8.01 6.52 5.55 4.71 4.30 
DCF(v4) 20.40 23.13 16.06 18.69 20.49 22.06 22.81 
DCF(v6) ' 18.55 

Closure crystal field d 
DCF(v3) 2.23 1.92 2.57 2.36 2.19 2.03 1.94 
DCF(v4) 1.59 2.16 0.94 1.33 1.67 1.94 2.10 
DCF(v6) ' 1.74 

Ligand polarization e 

DLP(V3) 1.30 1.79 0.80 1.12 1.40 1.63 1.75 
DLP(V4) 6.21 5.15 7.07 6.48 5.86 5.44 5.22 
DLt'(V6) ' 4.13 

a Calculations using other parameter sets are available from the authors 
b (r4)dp =0.565 × 10-3°m 3 (from Ref. [18] for Mn3+), AE = 105cm-l,f(3dxy--4py) =0.2  
° (r4)ad = 1.4736 x 10-4°m 4, (r6)ad =4.5718 + 10-6°m6 (from Ref. [22], for Mn°), hence e = 1.0247, 
AE = 105 c m -  1 
a (r4)dd = 0.2268 X 10 -40 m 4, (r6)dd = 0.2838 + 10 -60 m 6 (from Ref. [22], for Mn4+), hence c~ = 0.4133, 
AE = 105 cm -1 
e (r4)ad = 0.268 X lO-4°m 4, ~L = 1 X lO-3°m 3 [21] 

Table 3. Calculated dipole strengths [D/10-4(Debyes) 2] and relative intensity distributions for the 
vibronic origins of the 4A2g --~ 4T2g transition of  the MnF 2 - ion in the Liehr-Ballhausen crystal field 
plus Ligand Polarization modeP ,b. 1 Debye = 10 -30 Cm 

Dipole strength a 
Force field 

Ref.[18] Ref.[20] k = 1 . 6 7  k = 1 . 5 9  k = 1 . 5 0  k = 1 . 4 0  k = 1 . 3 3  

D cF 13.81 14.50 13.31 13.61 13.96 14.26 14.42 
D LP 11.64 11.07 12.01 11.72 11.39 11.20 11.10 
D (cF, Lp) 5.45 6.06 4.10 4.93 5.42 5.80 5.98 

f(v3) : f(v4) : f(vr) 3.56 : 3.23 5.66:4.54 2.04:2.35 2.87 : 2.84 3.76 : 3.40 4.77 : 4.01 5.41 : 4.40 

[f(v3) = 11 

a Calculations using other parameter sets are available from the authors 
b(r3)dp=O.565xlO 3°m3 (from Ref. [18] for Mn3+), A E = 1 0 5 c m  1, f(3dxy_4py)=0.2, 
e(r4)da=0.269x10 4°m4, c~ L = I  x 10-3°m 3 
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Table  3 shows the results o f  a t t empt ing  to  combine  the crys ta l  field and  
l igand po la r i za t ion  terms.  As  we have emphas ized  previous ly  there is no logical  
way o f  do ing  this since bo th  are scaled by  imprecise ly  defined quanti t ies .  
Never theless  to i l lustrate the p rocedure  the t rans i t ion  momen t s  o f  the L i e h r -  
Bal lhausen  crystal  field and  the l igand po la r i za t ion  me thods  have been combined  
accord ing  to Eqs. (21) and  (23). 

Overal l  we conclude  tha t  for  this t rans i t ion  bo th  the l igand po la r i za t ion  and  
crystal-f ield closure models  are  able  to  account  for  the observed  intensi ty 
d i s t r ibu t ion  ei ther  a lone  or  in combina t ion .  The  L i e h r - B a l l h a u s e n  p rocedure  
canno t  on  its own do this. The sensit ivity o f  the ca lcula ted  intensi ty  d i s t r ibu t ion  
to  the v ib ra t iona l  wavefunct ions  is confined using the correc ted  wavefunct ions  
bu t  deta i led compa r i son  o f  the results o f  this s tudy with  those o f  papers  [ 1 -3]  
i l lustrate  the need to use correc t ly  normal ized  funct ions  o f  the a p p r o p r i a t e  phase.  
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Appendix 1. The S = ( U B ) R  transformation for the MnF 2-  ion 

Symmetry species 

cqu-symmetry: $1 = {1/~/6}{X2 - )(3 + Y4 - -  ]I5 + Z6 - -  Z7} 

metry: $20 =(1/~/12}{-Xz+X3- Y4+ Ys+2Z6--ZZT} 
S2~ = {1/2}{X2- X3-  Y4+ Ys} 



Vibronic intensities in the 

Zl.-symmetry: $3~ ={1/. 

S3b={W, 
83~ ={1/, 

s4~=(1/, 
S4b={1/, 

electronic spectra of transition metal complex ions VIII 

/2}(x2 + x3 - 2 x ~  } 

/2}{ Y4 + Y s - 2 Y M }  

/ 2 } { -  x4 - Xs - X6 - x7 + 4xM } 

/2}{- Y2- 113- ~IZ6-- Y7 +4YM} 

Z2g -symmetry: 

zz~ -symmetry: 

$4~ = { 1 / , / 2 } { - Z 2  - Z3 - Z4 - Z5 + 4ZM} 
&~={-Y6+ r7-Z,+Z~} 
S ~  = { -  X ,  + X ~ -  Z~ + Z~} 

Ssa 
$6~= 
S6b= 
S6a 

{ - x 4 + x s -  r2+ Y3} 

{ l l , / 2 ) { -x4 -  xs + x6 + x7) 

{1&/2){y2 + Y3- Y6- Y7) 
{ l l , /2}{-  z 2 -  z3 + z~ + z , }  
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Appendix. Crystal field vibronic coupling operators 

V3, = 1/x/2(4Zlo + 8Z3o + 12Z5o + 16Z7o +.- .} 

V4=l/2{4Zw_6Z3o+~Zso+ 3 3~ 35 2 ~  

V6, = l/2{~/~Z,32_ 3 ¢ Z,52 + 2~ 30~3 } 
V3b=i/N/R{4Z~ll--8~Z'31--8~Z~33-JclR~4ZPs1 q- 3~5 z ' 12 4 128 53 

~3 Z' ~6~ 2/~ _4 2~31Z, _4 4 ~  + 12 ~/128 55- 20 Z:71- 12 Z73 ~/ 64 75 ~ /~ -  Z77-}- ' }  

V<Ib=il2{2xf2Z',,+3 ZI,+3 / - f f -Z t3+9k /~Z i l -3  /128 53 

+ 

V6b=i/2 5 ; , - 3  /~-Z33+7 Z;1+34128 53 15 z}5 

+ 69 Z:Tt - 9 Z73 + 5 ~/5~ Z75 - 7 4 ~  

V3~=l/xf2{azll-8~Z31+8~Z33+124641~5Z -51 12~1~8Z5335 

+ 1 2 4 1 ~  55--20 Z7'+I2~Z73--4~Z75+4~/ 64 
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-3~233+9~25,+3~253 
~z  ~ m ~ ~z  +15/128 55+59__~,-9~273-5~275-7/512 7~+ 

V6c = 1/2 - 5 Z31 -- 3 Z33 - 7 ~ 64 51 + 3 Zs3 

+15  2 5 5 - 6 9  2 7 1 - 9 ~ / 5 i 2 2 7 3 - 5 ~ / ' ~ 2 7 5 - 7  ~/512 277 

where, we define: 

Ze2r# l 
Zto = R~o+ 2 Co 

Z e 2 r l ¢ - C l m  +Cl_m~ 
Ztm -- Rl+2 I- ~ " 

o \ . , /2  / 

ZeZr l f Clm + Cl_m ~ 

z"~:.'Tt 7 ) 

.} 

.} 


